Фотоаппараты        12.07.2023   

Максимальная дальность прямой видимости. Географическая дальность видимости предметов

Видимый горизонт, в отличие от истинного горизонта, представляет собой окружность, образованную точками касания лучей, проходящих через глаз наблюдателя касательно к земной поверхности. Представим, что глаз наблюдателя (рис. 8) находится в точке А на высоте ВА=е над уровнем моря. Из точки А можно провести бесчисленное количество лучей Ac, Ac¹, Ас², Ас³ и т. д., касательных к поверхности Земли. Точки касания с, с¹ с² и с³ образуют окружность малого круга.

Сферический радиус Вс малого круга с с¹с²с³ называется теоретической дальностью видимого горизонта.

Величина сферического радиуса находится в зависимости от высоты глаза наблюдателя над уровнем моря.

Так, если глаз наблюдателя будет находиться в точке A1 на высоте ВА¹ = е¹ над уровнем моря, то и сферический радиус Вс" будет больше сферического радиуса Вс.

Чтобы определить зависимость между высотой глаза наблюдателя и теоретической дальностью его видимого горизонта, рассмотрим прямоугольный треугольник АОс:

Ас² = АО² - Ос²; АО = OB + е; OB = R,

Тогда АО = R + е; Ос = R.

Вследствие незначительности высоты глаза наблюдателя над уровнем моря по сравнению с размерами радиуса Земли длину касательной Ас может принять равной величине сферического радиуса Вс и, обозначив теоретическую дальность видимого горизонта через D T получим

D 2T = (R + e)² - R² = R² + 2Re + e² - R² = 2Re + e²,


Рис. 8


Учитывая, что высота глаза наблюдателя е на судах не превышает 25 м, a 2R = 12 742 220 м, отношение е/2R настолько мало, что без ущерба для точности им можно пренебречь. Следовательно,


так как е и R выражаются в метрах, то и Dт получится тоже в метрах. Однако действительная дальность видимого горизонта всегда больше теоретической, так как луч, идущий от глаза наблюдателя к точке, находящейся на земной поверхности, из-за неодинаковой плотности слоев атмосферы по высоте преломляется.

В данном случае луч от точки А к с идет не по прямой Ас, а по кривой ASm" (см. рис. 8). Поэтому наблюдателю точка с представляется видимой по направлению касательной AT, т. е. приподнятой на угол r = L ТАс, называемый углом земной рефракции. Угол d = L HAT называют наклонением видимого горизонта. И на самом деле, видимым горизонтом будет являться малый круг m", m" 2 , тз", с несколько большим сферическим радиусом (Bm" > Вс).

Величина угла земной рефракции не является постоянной и зависит от преломляющих свойств атмосферы, которые изменяются от температуры и влажности воздуха, количества в воздухе взвешенных частиц. В зависимости от времени года и даты суток она также изменяется, поэтому действительная дальность видимого горизонта по сравнению с теоретической может увеличиваться до 15%.

В навигации увеличение действительной дальности видимого горизонта по сравнению с теоретической принимают 8%.

Поэтому, обозначив действительную, или, как еще ее называют, географическую, дальность видимого горизонта через D e , получим:


Чтобы получить Dе в морских милях (принимая R и е в метрах), радиус земли R, так же как и высоту глаза е, делим на 1852 (1 морская миля равна 1852 м). Тогда
Чтобы получить результат в километрах, вводим множитель 1,852. Тогда
дл я облегчения расчетов по определению дальности видимого горизонта в табл. 22-а (МТ-63) дана дальность видимого горизонта в зависимости от е, в пределах от 0,25 до 5100 м, рассчитанная по формуле (4а).

Если действительная высота глаза не совпадает с числовыми значениями, указанными в таблице, то дальность видимого горизонта может быть определена линейным интерполированием между двумя близкими к действительной высоте глаза величинами.

Дальность видимости предметов и огней

Дальность видимости предмета Dn (рис. 9) будет складываться из двух дальностей видимого горизонта, зависящих от высоты глаза наблюдателя (D e) и высоты предмета (D h), т. е.
Она может быть определена по формуле
где h - высота ориентира над уровнем воды, м.

Для облегчения определения дальности видимости предметов пользуются табл. 22-в (МТ-63), рассчитанной по формуле (5а): Чтобы определить по этой таблице, с какого расстояния откроется предмет, необходимо знать высоту глаза наблюдателя над уровнем воды и высоту предмета в метрах.

Дальность видимости предмета можно также определить по специальной номограмме (рис. 10). Например, высота глаза над уровнем воды 5,5 м, а высота h обстановочного знака 6,5 м, чтобы определить D n , к номограмме прикладывают линейку так, чтобы она соединяла на крайних шкалах точки, соответствующие h и е. Точка пересечения линейки со средней шкалой номограммы покажет искомую дальность видимости предмета D n (на рис. 10 D n = 10,2 мили).

В пособиях по судовождению - на картах, в лоциях, в описаниях огней и знаков - дальность видимости предметов DK указывается при высоте глаза наблюдателя 5 м (на английских картах - 15 футов).

В том случае, когда действительная высота глаза наблюдателя другая, необходимо ввести поправку AD (см. рис. 9).


Рис. 9


Пример. Дальность видимости предмета, указанная на карте, DK = 20 милям, а высота глаза наблюдателя е = 9 м. Определить действительную дальность видимости предмета D n с использованием табл. 22-а (МТ -63). Решение.


В ночное время дальность видимости огня зависит не только от его высоты над уровнем воды, но также от силы источника освещения и от разряда осветительного аппарата. Обычно осветительный аппарат и сила источника освещения рассчитываются таким образом, чтобы дальность видимости огня ночью соответствовала действительной дальности видимости горизонта с высоты огня над уровнем моря, но бывают и исключения.

Поэтому огни имеют свою «оптическую» дальность видимости, которая может быть больше или меньше дальности видимости горизонта с высоты огня.

В пособиях по судовождению указывается действительная (математическая) дальность видимости огней, но если она больше оптической, то указывается последняя.

Дальность видимости береговых знаков судоходной обстановки зависит не только от состояния атмосферы, но и от многих других факторов, к которым относятся:

А) топографические (определяются характером окружающей местности, в частности преобладанием того или иного цвета в окружающем ландшафте);

Б) фотометрические (яркость и цвет наблюдаемого знака и фона, на котором он проектируется);

В) геометрические (расстояние до знака, его размеры и форма).

Географическая дальность видимости предметов в море Д п определяется наибольшим расстоянием, на котором наблюдатель увидит его вершину над линией горизонта, т.е. зависит только от геометрических факторов, связывающих высоту глаза наблюдателя е и высоту ориентира h при коэффициенте рефракции c (рис.1.42):

где Д е и Д h - соответственно дальности видимого горизонта с высоты глаза наблюдателя и высоты предмета. Т.о. дальность видимости предмета, рассчитанная по высоте глаза наблюдателя и высоте предмета называется географической или геометрической дальностью видимости.

Расчёт географической дальности видимости предмета может производиться по табл. 2.3 МТ – 2000 по аргументам e и h или по табл. 2.1 МТ – 2000 суммированием результатов, полученных двукратным входом в таблицу по аргументам е и h. Можно также получить Д п по номограмме Струйского, которая приведена в МТ – 2000 под номером 2.4, а также в каждой книге “Огни” и “Огни и знаки” (рис.1.43).

На морских навигационных картах и в навигационных пособиях географическая дальность видимости ориентиров даётся для постоянной высоты глаза наблюдателя е = 5 м и обозначается как Д к - дальность видимости указанная на карте.

Подставив значение е = 5 м в формулу (1.126), получим:

Для определения Д п надо к Д к ввести поправку DД, величина которой и знак определяются формулой:

Если фактическая высота глаза больше 5 м, то DД имеет знак “+”, если меньше - знак “-“. Таким образом:

. (1.129)

Величина Д п зависит также и от остроты зрения, которая выражается в разрешающей способности глаза по углу, т.е. определяется и наименьшим углом, на котором предмет и линия горизонта различаются раздельно (рис.1.44).

В соответствии с формулой (1.126)

Но из-за разрешающей способности глаза g наблюдатель увидит предмет только тогда, когда его угловые размеры будут не меньше g, т.е. когда он будет виден над линией горизонта не менее чем на Dh, которая из элементарного DА¢СС¢ при углах С и С¢ близких к 90° будет Dh = Д п × g¢.

Чтобы получить Д п g в милях при Dh в метрах:

где Д п g - географическая дальность видимости предмета с учётом разрешающей способности глаза.

Практическими наблюдениями определено, что при открытии маяка g =2¢, а при скрытии g =1,5¢.

Пример . Найти географическую дальность видимости маяка высотой h=39 м, если высота глаза наблюдателя е=9 м, без учёта и с учётом разрешающей способности глаза g =1,5¢.



Влияние гидрометеорологических факторов на дальность видимости огней

На дальность видимости ориентиров кроме геометрических факторов (е и h) влияет также контрастность, позволяющая выделить ориентир на окружающем фоне.

Дальность видимости ориентиров днём, учитывающая также контрастность, называется дневной оптической дальностью видимости.

Для обеспечения безопасного судовождения в ночных условиях используются специальные средства навигационного оборудования, имеющие светооптические приборы: маяки, светящиеся навигационные знаки и навигационные огни.

Морской маяк - это специальное капитальное сооружение с дальностью видимости белого или приведённых к нему цветных огней не менее 10 миль.

Светящийся морской навигационный знак - капитальное сооружение, имеющее светооптический аппарат с дальностью видимости белого или приведённых к нему цветных огней менее 10 миль.

Морской навигационный огонь - световой прибор, установленный на естественных объектах или сооружениях неспециальной постройки. Такие СНО часто действуют автоматически.

В тёмное время суток дальность видимости огней маяков и светящихся навигационных знаков зависит не только от высоты глаза наблюдателя и высоты светящегося СНО, но и от силы источника света, цвета огня, конструкции светооптического аппарата, а также и от прозрачности атмосферы.

Дальность видимости, учитывающая все эти факторы, называется ночной оптической дальностью видимости, т.е. это максимальная дальность видимости огня в данное время при данной метеорологической дальности видимости.

Метеорологическая дальность видимости зависит от прозрачности атмосферы. Часть светового потока огней светящих СНО поглощается частицами, содержащимися в воздухе, поэтому происходит ослабление силы света, характеризующееся коэффициентом прозрачности атмосферы t :

где I 0 - сила света источника; I 1 - сила света на некотором расстоянии от источника, принимаемого за единицу (1 км, 1 миля).

Коэффициент прозрачности атмосферы всегда меньше единицы, поэтому географическая дальность видимости обычно больше реальной, за исключением аномальных случаев.

Прозрачность атмосферы в баллах оценивается по шкале видимости таблицы 5.20 МТ – 2000 в зависимости от состояния атмосферы: дождь, туман, снег, дымка и т.д.

Так как оптическая дальность видимости огней изменяется в значительных пределах в зависимости от прозрачности атмосферы, Международная ассоциация маячных служб (МАМС) рекомендовала использовать термин “номинальная дальность видимости”.

Номинальной дальностью видимости огня называется оптическая дальность видимости при, метеорологической дальности видимости 10 миль, что соответствует коэффициенту прозрачности атмосферы t = 0,74. Номинальная дальность видимости указывается в навигационных пособиях многих зарубежных стран. На отечественных картах и в руководствах для плавания указывается стандартная дальность видимости (если она меньше географической дальности видимости).

Стандартной дальностью видимости огня называется оптическая дальность видимости при метеорологической дальности видимости 13,5 миль, что соответствует коэффициенту прозрачности атмосферы t = 0,8.

В навигационных пособиях “Огни”, “Огни и знаки” кроме таблицы дальности видимого горизонта и номограммы дальности видимости предметов есть и номограмма оптической дальности видимости огней (рис.1.45). Эта же номограмма приведена в МТ – 2000 под номером 2.5.

Аргументами для входа в номограмму являются сила света, или номинальная, или стандартная дальности видимости, (полученные из навигационных пособий), и метеорологическая дальность видимости, (полученная из метеорологического прогноза). По этим аргументам из номограммы получают оптическую дальность видимости.

При проектировании маяков и огней стремятся, чтобы оптическая дальность видимости была бы равна географической дальности видимости при ясной погоде. Однако, для многих огней оптическая дальность видимости меньше географической. Если эти дальности не равны, то на картах и в руководствах для плавания указывается меньшая из них.

Для практических расчётов ожидаемой дальности видимости огня днём надо по высотам глаза наблюдателя и ориентира рассчитать Д п по формуле (1.126). Ночью : а) если оптическая дальность видимости больше географической, надо взять поправку за высоту глаза наблюдателя и рассчитать географическую дальность видимости по формулам (1.128) и (1.129). Принять меньшую из оптической и географической, рассчитанной по этим формулам; б) если оптическая дальность видимости меньше географической - принять оптическую дальность.

Если на карте у огня или маяка Д к < 2,1 h + 4,7 , то поправку DД вводить не нужно, т.к. эта дальность видимости оптическая меньшая географической дальности видимости.

Пример . Высота глаза наблюдателя e = 11 м, дальность видимости огня, указанная на карте Д к =16 миль. Номинальная дальность видимости маяка из навигационного пособия “Огни” 14 миль. Метеорологическая дальность видимости 17 миль. На каком расстоянии можно ожидать открытия огня маяка?

По номограмме Допт » 19,5 мили.

По е = 11м ® Д е = 6,9 мили

Д 5 = 4,7 мили

DД =+2,2 мили

Д к = 16,0 мили

Д п = 18,2 мили

Ответ: можно ожидать открытия огня с расстояния 18,2 мили.



Морские карты. Картографические проекции. Поперечная равноугольная цилиндрическая проекция Гаусса и её использование в судовождении. Перспективные проекции: стереографическая, гномоническая.

Карта – уменьшенное искажённое изображение сферической поверхности Земли на плоскости, при условии, что искажения закономерны.

План – не искажённое за счёт малости изображаемого участка изображение земной поверхности на плоскости.

Картографическая сетка – совокупность линий, изображающих на карте меридианы и параллели.

Картографическая проекция – математически обоснованный способ изображения меридианов и параллелей.

Географическая карта - построенное в данной проекции условное изображение всей земной поверхности или её части.

Карты бывают различными по назначению и масштабу, например: планисферы – изображающие всю Землю или полушарие, генеральные или общие – изображающие отдельные страны, океаны и моря, частные – изображающие меньшие пространства, топографические – изображающие подробности поверхности суши, орографические – карты рельефа, геологичекие – залегание пластов и т.д.

Морские карты – специальные географические карты, предназначенные в основном для обеспечения судовождения. В общей классификации географических карт они отнесены к техническим. Особое место среди морских карт занимают МНК, служащие для прокладки курса судна и определения его места в море. В судовой коллекции также могут быть вспомогательные и справочные карты.

Классификация картографических проекций.

По характеру искажений все картографические проекции делят на:

  • Равноугольные или конформные – проекции, в которых фигуры на картах подобны соответствующим фигурам на поверхности Земли, но их площади не пропорциональны. Углы между объектами на местности соответствуют таковым на карте.
  • Равновеликие или эквивалентные – у которых сохранена пропорциональность площадей фигур, но при этом искажаются углы между объектами.
  • Равнопромежуточные – сохраняющие длину по одному из главных направлений эллипса искажений, т.е., например, круг на местности на карте изображается в виде эллипса, у которого одна из полуосей равна радиусу такого круга.
  • Произвольные – все остальные, не обладающие вышеуказанными свойствами, но подчиняющиеся иным условиям.

По способу построения проекции делят на:

F
Перспективные – изображение получается в пересечении картинной плоскости с прямой, соединяющей проецируемую точку с точкой зрения. Картинная плоскость и точка зрения могут занимать различные положения по отношению к поверхности Земли: рисунки если картинная плоскость касается поверхности Земли в какой-либо точке, то проекция называется азимутальной. Азимутальные проекции делятся на: стереографические – когда точка зрения находится на противоположном полюсе сферы , ортографические – когда точка зрения удалена в бесконечность, внешние – точка зрения находится на конечном расстоянии далее противоположного полюса сферы, центральные или гномонические – когда точка зрения находится в центре сферы. Перспективные проекции – не конформны и не эквивалентны. Измерение расстояний на картах, построенных в таких проекциях затруднено, зато дуга большого круга изображается прямой линией, что удобно при прокладке радиопеленгов, а также - курсов при плавании по ДБК. Примеры. В этой проекции могут строиться также карты приполярных областей.

В зависимости от точки касания картинной плоскости гномонические проекции делятся на: нормальные или полярные – касание на одном из полюсов поперечные или экваториальные – касание – на экваторе
горизонтальные или косые – касание в любой точке между полюсом и экватором (меридианы на карте в такой проекции представляют собой расходящиеся от полюса лучи, а параллели – эллипсы, гиперболы или параболы.

Каждый предмет имеет определенную высоту Н (рис. 11), поэтому дальность видимости предмета Дп-MR слагается из дальности видимого горизонта наблюдателя Де=Мc и дальности видимого горизонта предмета Дн=RС:


Рис. 11.


По формулам (9) и (10) H. Н. Струйским составлена номограмма (рис. 12), а.в МТ-63 приведена табл. 22-в «Дальность видимости предметов», рассчитанная по формуле (9).

Пример 11. Найти дальность видимости предмета высотой над уровнем моря H=26,5 м (86фут) при высоте глаза наблюдателя над уровнем моря е = 4,5 м (1 5 фут).

Решение.

1. По номограмме Струйского (рис. 12) па левой вертикальной шкале «Высота наблюдаемого предмета» отмечаем точку, соответствующую 26,5 м (86 фут), на правой вертикальной шкале «Высота глаза наблюдателя» отмечаем точку, соответствующую 4,5 м (15 фут); соединив отмеченные точки прямой линией, в месте пересечения последней со средней вертикальной шкалой «Дальность видимости» получаем ответ: Дn = 15,1 м.

2. По МТ-63 (табл. 22-в). Для е=4, 5 м и H=26, 5 м величина Дn = 15,1 м. Приводимая в навигационных пособиях и на морских картах дальность видимости маячных огней Дк-KR рассчитана для высоты глаза наблюдателя, равной 5 м. Если действительная высота глаза наблюдателя не равна 5 м, то к данной в пособиях дальности Дк необходимо прибавить поправку А = МС-КС- =Де-Д5 . Поправка является разностью между дальностями видимого горизонта с высоты еми 5 м и называется поправкой на высоту глаза наблюдателя:


Как видно из формулы (11), поправка на высоту глаза наблюдателя А может быть положительной (когда е> 5 м) или отрицательной (когда е
Итак, дальность видимости маячного огня определяется по формуле


Рис. 12.


Пример 12. Дальность видимости маяка, указанная на карте, Дк = 20,0 мили.

С какого расстояния увидит огонь наблюдатель, глаз которого находится на высоте е = 16 м.

Решение. 1) по формуле (11)


2) по табл. 22-а МЕ-63 А=Де - Д5 = 8,3-4,7 = 3,6 мили;

3) по формуле (12) Дп = (20,0+3,6) = 23,6 мили.

Пример 13. Дальность видимости маяка, указанная на карте, Дк = 26 миль.

С какого расстояния увидит огонь наблюдатель, находящийся на шлюпке (е=2, 0 м)

Решение. 1) по формуле (11)


2) по табл. 22-а МТ-63 А=Д - Д = 2,9 - 4,7 = -1,6 мили;

3) по формуле (12) Дп = 26,0-1,6 = 24,4 мили.

Дальность видимости предмета, рассчитанную по формулам (9) и (10), называют географической.


Рис. 13.


Дальность видимости маячного огня, или оптическая дальность видимости, зависит от силы источника света, системы маячного аппарата и цвета огня. В правильно построенном маяке она обычно совпадает с его географической дальностью.

В пасмурную погоду действительная дальность видимости может значительно отличаться от географической или оптической дальности.

В последнее время исследованиями установлено, что в условиях дневного плавания дальность видимости предметов точнее определяется по следующей формуле :


На рис. 13 приведена номограмма, рассчитанная по формуле (13). Пользование номограммой поясним на решении задачи с условиями примера 11.

Пример 14. Найти дальность видимости предмета высотой над уровнем моря Н = 26,5 м, при высоте глаза наблюдателя над уровнем моря е = 4,5 м.

Решение. 1 по формуле (13)